© 2019 Kuta Software LLC. All rights reserved.

For each problem, approximate the area under the curve over the given interval using 4 left endpoint rectangles.

1)
$$y = -x^2 + 13$$
; [-1, 3]

For each problem, approximate the area under the curve over the given interval using 4 right endpoint rectangles.

2)
$$y = -\frac{4}{x}$$
; [-6, -2]

For each problem, approximate the area under the curve over the given interval using 4 midpoint rectangles.

3)
$$y = -\frac{x^2}{2} + x + 5$$
; [-2, 2]

For each problem, approximate the area under the curve over the given interval using 4 trapezoids.

4)
$$y = \frac{2}{x}$$
; [2, 6]

For each problem, use a left-hand Riemann sum to approximate the integral based off of the values in the table.

$$5) \int_0^8 f(x) \, dx$$

х	0	1	3	6	8
f(x)	1	0	1	0	1

For each problem, use a right-hand Riemann sum to approximate the integral based off of the values in the table.

$$6) \int_0^8 f(x) \, dx$$

•0										
	х	0	1	5	6	8				
	f(x)	-3	-2	-3	-2	-3				

For each problem, find the area under the curve over the given interval.

7)
$$y = 2\sqrt{x}$$
; [2, 3]

8)
$$y = \frac{2}{x^2}$$
; [-4, -2]

9)
$$y = -\sin x$$
; $[-\pi, -\frac{\pi}{4}]$

10)
$$y = -\cos x$$
; $[\frac{\pi}{2}, \pi]$

For each problem, find the area of the region enclosed by the curves.

11)
$$y = 3\sqrt{x}$$
, $y = \sqrt{x}$, $x = 0$, $x = 4$

12)
$$y = 2x^2 + 1$$
, $y = x^2 - 2x$, $x = -1$, $x = 1$

For each problem, find the volume of the solid that results when the region enclosed by the curves is revolved about the *x*-axis.

13)
$$y = \sec x$$
, $y = 0$, $x = 0$, $x = \frac{\pi}{4}$

14)
$$y = -x^2 + 5$$
, $y = x^2 + 3$

For each problem, find the volume of the specified solid. Set up, but do not evaluate the integral. A graph representing the base is provided.

15) The base of a solid is the region enclosed by $y = -\frac{x^2}{9} + 4$ and y = 0. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.

16) The base of a solid is the region enclosed by $y = -x^2 + 1$ and y = 0. Cross-sections perpendicular to the *x*-axis are squares.

17) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{9}$. Cross-sections perpendicular to the *x*-axis are semicircles.

Answers to

2)
$$\frac{77}{15} \approx 5.133$$
 3) $\frac{35}{2} = 17.5$ 4) $\frac{67}{30} \approx 2.233$

3)
$$\frac{35}{2} = 17.5$$

4)
$$\frac{67}{30} \approx 2.233$$

6)
$$-22$$
 7) $\frac{4(3\sqrt{3} - 2\sqrt{2})}{3} \approx 3.157$

8)
$$\frac{1}{2} = 0.5$$

9)
$$\frac{2+\sqrt{2}}{2} \approx 1.707$$

11)
$$\int_{0}^{4} (3\sqrt{x} - \sqrt{x}) dx$$
$$= \frac{32}{3} \approx 10.667$$

12)
$$\int_{-1}^{1} (2x^{2} + 1 - (x^{2} - 2x)) dx$$

$$= \frac{8}{3} \approx 2.667$$

$$= 3.142$$
13)
$$\pi \int_{0}^{\frac{\pi}{4}} \sec^{2} x dx$$

13)
$$\pi \int_0^{\frac{\pi}{4}} \sec^2 x \, dx$$
$$= \pi \approx 3.142$$

14)
$$\pi \int_{-1}^{1} ((-x^2 + 5)^2 - (x^2 + 3)^2) dx$$

= $\frac{64}{3} \pi \approx 67.021$

15)
$$\frac{1}{2} \int_{-6}^{6} \left(-\frac{x^2}{9} + 4 \right)^2 dx$$
 16) $\int_{-1}^{1} \left(-x^2 + 1 \right)^2 dx$

16)
$$\int_{-1}^{1} (-x^2 + 1)^2 dx$$

17)
$$\frac{\pi}{8} \int_{-6}^{6} \left(4 - \frac{x^2}{9}\right)^2 dx$$